## What is a Symmetric Polynomial?

A polynomial is a **symmetric polynomial** if its variables are unchanged under any permutation (i.e. swap). In other words, if you switch out two of the variables, you end up with the same polynomial.

## Examples

The polynomial x + y + z is symmetric because if you switch any of the variables, it remains the same. In other words,

**x + y + z = y + z + x = z + x + y**

The polynomial x_{1}x_{3} + 3x_{1}x_{2}x_{3} is a symmetric polynomial, because if you swap the variables, then it’s still the same polynomial. For example, the following image shows that swapping x_{1} and x_{3} results in the same polynomial:

In other words, x_{1}x_{3} + 3x_{1}x_{2}x_{3} is the same polynomial as x_{3}x_{1} + 3x_{3}x_{2}x_{1}

On the other hand, x_{1}x_{2} + x_{2}x_{3} is *not *symmetric. If you swap two of the variables (say, x_{2} and x_{3}, you get a completely different expression.

## Elementary Symmetric Polynomial

**Elementary symmetric polynomials** (sometimes called *elementary symmetric functions*) are the building blocks of all symmetric polynomials. For the variables x_{1}, x_{2}, x_{3},… x_{n}, they are defined mathematically as follows:

- S
_{1}= x_{1}+ x_{2}+ x_{3}+ … + x_{n} - S
_{2}= x_{1}x_{2}+ x_{1}x_{3}+ x_{1}x_{4}+ … + x_{(n – 1)}x_{(n – 2)} - S
_{3}= x_{1}x_{2}x_{3}+ x_{1}x_{2}x_{4}+ … + x_{(n – 2)}x_{(n – 1)}x_{n} - …
- S
_{n}= x_{1}x_{2}x_{3}… x_{n}

As an example, the elementary symmetric polynomials for the variables x_{1}, x_{2} and x_{3} are:

- S
_{1}= x_{1}+ x_{2}+ x_{3} - S
_{2}= x_{1}x_{2}+ x_{1}x_{3}+ x_{2}x_{3} - S
_{3}= x_{1}x_{2}x_{3}

## Graphs of a Symmetric Polynomial

They are called “symmetric” not because their graph shows symmetry, but because they remain the same if you permute their roots. As far as graphing, the graph of any symmetric polynomial would look exactly the same no matter which variables you switch around. If the graph changes, then the expression is *not *symmetric.

## Why are Symmetric Polynomials Important?

Symmetric polynomials are particularly important in number theory because two types—the elementary symmetric and power sum symmetric polynomials can **completely represent any set of points** in the set of all complex numbers.

Next: Testing for Symmetry of a Function.

## References

Egge, E. (2018). Combinatorics of Symmetric Functions. Retrieved December 2, 2019 from: https://d31kydh6n6r5j5.cloudfront.net/uploads/sites/66/2019/04/eggecompsdescription.pdf

Mario123. Symmetric Polynomials. Retrieved December 2, 2019 from: file:///C:/Users/brit6/Downloads/Symmetric%20Polynomials.pdf

Negrinho, R. (2013). Shape Representation Via Symmetric Polynomials: a Complete Invariant Inspired by the Bispectrum. Retrieved December 2, 2019 from: https://www.cs.cmu.edu/~negrinho/assets/papers/msc_thesis.pdf

Singhal, M. (2017). Generalizations of Hall-Littlewood Polynomials. Retrieved December 2, 2019 from: https://math.mit.edu/research/highschool/primes/materials/2017/conf/5-4-Singhal.pdf

**CITE THIS AS:**

**Stephanie Glen**. "Symmetric Polynomial & Elementary Symmetric Functions" From

**CalculusHowTo.com**: Calculus for the rest of us! https://www.calculushowto.com/symmetric-polynomials/

**Need help with a homework or test question? **With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!