Calculus How To

Extreme Value Theorem: Simple Definition

Share on

Calculus Definitions >

The extreme value theorem tells us that a continuous function contains both the maximum value and a minimum value as long as the function is:

  1. Real-valued,
  2. Defined on a closed interval, I.

Another way of saying this is that the continuous, real-valued function, f, attains its maximum value and its minimum value each at least once on the interval.

This theorem may seem too simple to be really important or significant, but it actually is the foundation for other theorems and is very significant in the groundwork of Calculus. It is used to prove Rolle’s theorem, among other things.

Examples of the Extreme Value Theorem in Action

The image below shows a continuous function f(x) on a closed interval from a to b. [a,b]. The absolute maximum is shown in red and the absolute minimum is in blue.

Extreme Value Theorem
Since we know the function f(x) = x2 is continuous and real valued on the closed interval [0,1] we know that it will attain both a maximum and a minimum on this interval.

In order for the extreme value theorem to be able to work, you do need to make sure that a function satisfies the requirements:

  • Real-valued,
  • Continuous,
  • Closed interval domain,

For example, the function f(x) = 1/x on the half open interval (0,1] doesn’t attain a maximum. That’s because the interval is not closed.


The extreme value theorem itself was first proved by the Bohemian mathematician and philosopher Bernard Bolzano (of Bolzano Theorem’s fame) in 1830, but his book, Function Theory, was only published a hundred years later in 1930. Another mathematician, Weierstrass, also discovered a proof of the theorem in 1860.


Wandzura, Jacqueline and Wandzura, Stephen. Extreme Value Theorem Demonstration. Retrieved from on August 11, 2019

Stephanie Glen. "Extreme Value Theorem: Simple Definition" From Calculus for the rest of us!

Need help with a homework or test question? With Chegg Study, you can get step-by-step solutions to your questions from an expert in the field. Your first 30 minutes with a Chegg tutor is free!

Leave a Reply

Your email address will not be published. Required fields are marked *